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The stability of plane Poiseuille flow between 
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This paper examines the linear stability of antisymmetric disturbances in 
incompressible plane Poiseuille flow between identical flexible walls which 
undergo transverse displacements. Using a variational approach, an approxi- 
mate solution of the problem is formulated in a form suitable for computational 
evaluation of the (complex) wave speeds of the system. A feature of this formula- 
tion is that the varying boundary conditions (and the Orr-Sommerfeld equation) 
are satisfied only in the mean; this reduces the labour involved in determining 
the approximate solution for a variety of wall conditions without increasing the 
difficulty of obtaining solutions to a given accuracy. In  this paper the symmetric 
stream function distribution across the channel is represented by a series of 
cosines whose coefficients are determined by the variational solution. Compari- 
sons with previous work, both for the flexible-wall and rigid-wall problems, show 
that the method gives results as accurate as those obtained previously by other 
methods while new results, for flexible walls, indicate the presence of a higher 
wave-number stability boundary which joins the distorted Tollmien-Schlichting 
stability boundary at  lower wave-numbers. In  some cases this upper unstable 
region, which is characterized by large amplification rates, may determine the 
critical Reynolds number of the system. 

1. Introduction 
This paper represents a continuation of work by several authors on the effects 

of wall flexibility on the linear stability of parallel flows, Benjamin (1960) and 
Landahl (1962) have examined the question in some detail. In  particular, 
Benjamin has presented an analysis which gives considerable insight into the 
problem and gives predictions for the beneficial design of flexible walls, although 
it should be kept in mind that the results may overlook certain unstable regions 
whose wave speeds are different from the Tollmien-Schlichting mode. One object 
of any further work in this field would be to examine the relevance of these 
concepts in situations where the limits on fluid-solid coupling are unrestricted. 
Further motivation, as for the rigid-wall case, is supplied by examining the 
question of the accuracy of the classical asymptotic theory on which the afore- 
mentioned analyses are based. Approximate methods, such as the step-by-step 
integration through the boundary layer performed by Hains & Price (1962) and 
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Landahl & Kaplan (1965)) or ‘direct methods’ involving ‘modal’ series used for 
the rigid-wall problem by Lee & Reynolds (1967) and Grosch & Salwen (1968) 
give approximate, but highly accurate, results. One purpose of the present paper 
is to demonstrate the use of the modal method when the modes do not satisfy 
the boundary conditions of the problem and the errors in both the boundary 
conditions and the differential equation must be taken into account. There are a 
number of previous cases where the errors in the differential equation and 
boundary conditions, due to the substitution of an approximating series, have 
been combined (see, for example, the review article by Finlayson & Scriven 
1966). Perhaps the most common case occurs in structural mechanics where a 
virtual work equation includes the effect of boundary loads but the virtual 
displacements are still required to  satisfy the constraints or kinematic boundary 
conditions. If the problem has only ‘natural’ boundary conditions, or is self- 
adjoint, a way of combining the errors in the differential equation and boundary 
conditions can be chosen. The present problem does not fit into the above 
categories and it has been found useful to  set up the problem in a vector space 
and use the adjoint system t o  obtain the approximate solution from a variational 
formulation, thus ensuring that the eigenvalue will be stationary with respect to  
variations in this approximate solution. I n  the present problem the boundary 
conditions are in general functions of the phase speed, which is employed as the 
eigenvalue. Hence the modes will not satisfy the boundary conditions unless 
chosen in a special and complicated way; instead, we chose modes which bear no 
relationship to the boundary conditions. 

Previously published results have tended to  concentrate, in the main, on the 
modification of the Tollmien-Schlichting stability curves by flexible walls, but 
it seems worthwhile to examine the stability of walls which are susceptible to  
other modes of instability and for which the stability curves may be composite. 
Wall flexibility, apart from changing the shape of the unstable region and perhaps 
introducing new unstable regions in the €2, k plane, will also affect the wave speeds 
and amplification rates of the disturbances (see Benjamin 1964; Landahl & 
Kaplan 1965). These effects need to be considered in detail. 

I n  this paper we limit ourselves to the case of plane Poiseuille flow although the 
method is equally applicable to the boundary-layer situation. This enables the 
non-dimensionalization to be based on constant quantities so that the wall 
equation will not be required to  vary in the stream direction, a factor which may 
be important a t  low Reynolds numbers. Also the effect of three-dimensional 
disturbances may be gauged directly. Further, the basic flow profile is available 
in a simple analytic form and no ambiguity arises over its approximation. For a 
boundary-layer profile a high-order analytic approximation wouId be needed to  
give the integrals which arise in this method the same accuracy as that associated 
with the step length used in the numerical integration. 
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2. The stability problem 
Linear perturbations of a two-dimensional incompressible parallel flow may 

be represented by a stream function $( y ) eik(z-et) satisfying the Orr-Sommerfeld 
equation (see, for example, Lin 1955) 

- 2k2$” + k44 - ikR( (U - C )  (6” - k2$) - U $ >  = 0, ( 1 )  

where the variables are non-dimensionalized with respect to  a reference length 
and flow velocity, and primes denote differentiation with respect t o  y ,  the co- 
ordinate normal to  the basic flow U ( y ) ,  which is in the x direction. For plane 
Poiseuille flow the reference length and velocity are conventionally the half- 
width of the channel and the maximum flow velocity, whence, for the x axis 
aligned with the centre-line of the channel, U ( y )  = 1 - y2. R is the Reynolds 
number and k, the streamwise wave-number, is associated with a disturbance 
whose phase speed is c (non-dimensionalized with the maximum flow velocity). 

The boundary conditions for the problem are taken to  be (see, for example, 
Hains & Price 1962) 

I ( 2 )  
C # ’ ( l ) +  U(1)$(1)  = 0, 

( E I R ) Y ( 1 )  + = 0, 

(3) 1 and c $ h f ( - l ) + U f ( - 1 ) $ ( - l )  = 0, 

(EIR) $’”( - 1 )  - 4( - 1) = 0, 

where the (assumed identical) wall properties are related by 

Here we confine our attention to  walls which do not move parallel to  themselves 
and which may be represented conveniently by parameters which have been 
non-dimensionalized with respect to  the channel half-width, fluid density and 
kinematic viscosity (so that the Reynolds number may be changed through the 
flow velocity without affecting the wall properties). m is the ratio of the surface 
mass of the wall to the mass of fluid in a half-width channel; cw, which may be 
a function of k ,  is the free-wave speed in an undamped wall and D is a wall 
viscous damping parameter, cw and D non-dimensionalized with the fluid 
kinematic viscosity and the half-width of the channel. With this non-dimension- 
alization in the three-dimensional problem, oblique wave effects may be inter- 
preted through changes in k alone with no change in wall properties being 
necessary. The expression for RIE takes into account the viscous component of 
the normal stress; if the viscous effect is ignored the second term in the right-hand 
side of (4) has a numerical constant 2 instead of 6 associated with it. I n  addition, 
since c and cw have been non-dimensionalized in different ways, it will be 
convenient to introduce a further parameter c?, = cR for comparison of the 
system wave speed with the wall free-wave speed. 

We now propose to  solve the boundary-value problem specified by (l), (2) and 
(3) approximately, with c as the eigenvalue and k as a real parameter. To do this a 
variational formulation of the problem is discussed first in general terms. 



40 6 C. H .  Green and C. H .  Ellen 

3. The general variational formulation 
We consider the boundary-value problem in the symbolic form 

(L, - CL, 1 $ = 0, 
where L,, L, are linear differential operators of order 1, with boundary conditions 

(M,-cN,)$, = 0 (8  = 1, ... , a ) ,  
where M,, N, are linear differential operators of order less than 1. 

Introducing a Hilbert space of complex vector functions quadratically 
integrable over the domain of the operators whose components are $ and the 
values that q5 and its derivatives take on the boundaries, we rewrite the boundary- 

where the first element is a function and the remaining elements are complex 
numbers. 

For this space we d e h e  an inner product of two functions f = (fl, . . . ,fn ) and 

where f denotes the complex conjugate of f and V is the domain of definition 
off and 8. For an operator 9 t h e  adjoint operator 2*, if it  exists, may be defined 
by the relationship 

where + and +* are elements of the Hilbert space. As for scalar functions, with 
the stationary value of an integral generating the Euler equations of the problem, 
the stationary value of the functional (+*,2+) can be quite easily shown to 
generate the systems 2’4 = 0 and 2*+* = 0. Further, in the eigenvalue prob- 
lem the eigenvalue is also stationary when the function is stationary and a 
minimum when 2 = 2*, provided (+*, S2+} =# 0. 

Having presented this simple reformulation of the boundary-value problem 
we now follow the usual procedure to obtain a form for the approximate solution. 
Introducing sets of vector ‘test functions’ (or ‘modes’) 9, and CP:, an approxi- 
mation t o  + and +* is made by substituting the finite series 

(+*, 2 4 )  - (2*+*, 9) = 0, (7) 

N N 

n=l  n = l  
+ = C anan, +* = C (8) 

(the complex conjugate of a*, being merely inserted for convenience) into either 
of the functionals (+*, 2+) or (9* +*, +), which is made stationary with respect 
to variations in each an, a: in turn (a/aa,, a/aa: = 0,  for n = 1, ..., N ) .  Thus we 
generate the following sets of linear algebraic equations in the an and a:: 

I N 

n = l  
N 

n = l  

C an (a;, 29n) = 0, 

C an(L?*@~,CPn) = 0, 

m = 1, ..., N ,  

m = 1, ..., N ,  
(9) 
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N 1 

and 
_.  

C a$(@:, 9@,) = 0, m = 1 ,..., N ,  
,=l 

N 

n= 1 
2 az(9*@)n*,Qlrn)=O, m =  1 ,..., N .  

Regarding (9) and (10) as eigenvalue problems with eigenvectors whose compo- 
nents are the a,, a:, we may note that the matrices formed by the elements 
(@:, 9*,) and (5?*@$, an) are adjoint matrices and therefore, theoretically, 
have identical eigenvalues and eigenvectors. At the computational level it may 
be found that the matrices give different results owing to one being ill-conditioned 
(see Lee & Reynolds 1967). We also note that since the matrix elements in (10) 
are the transpose of the corresponding elements in (9) the eigenvalues will be the 
same for all equations; the eigenvectors, of course, will not. When @: = a,, 
the system becomes a generalization of the equivalent Galerkin form for scalar 
equations. However, unlike that case, where the adjoint problem needed the 
same boundary conditions as its original problem (or the system was self-adjoint) 
before the Galerkm method was equivalent to a variational problem, here no 
such restriction exists. We may observe that if elements of the test function 
satisfy a particular boundary condition that boundary condition will not 
contribute to the inner product in (9) and (10); if all the boundary conditions 
are satisfied the problem reduces to the conventional scalar form. 

The main point of this formulation is that we have now specified the way in 
which errors in the boundary conditions should be added into the error from the 
differential equation in order to make the eigenvalue stationary with respect 
to changes in the approximating series. The application to the plane Poiseuille 
problem is a demonstration of the use and accuracy of the method. 

4. Approximate solution of the stability problem 
We now write ( l ) ,  (2) and (3) in the form specified by (5). However, for reasons 

associated with the algebraic complexity of the problem it has been found more 
satisfactory to increase the dimensions of the Hilbert space. Therefore we write 

-Ep+ = - C  = 0. 

+, +* and Z*+* are now determined such that (7)  is satisfied. Although the 
f i s t  components of +, +* and 9*+* must be 295, 295* and 

#*iv-2k2$*“+k4$*+ikR((U$*)N- k’U+*- U”95*}+cikR(95*”-E’95*), 
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respectively, because of (6) and (7),  there is some flexibility in the choice of the 
other components. For further computation, we choose the adjoint system as 

- c 

and 

- 

+ =  

- 
- ikR($*” - k2$*) 

$*‘(I) 

$*’( - 1 )  
- $*”’( 1) - (R/E)  $*( 1) 

- 

= 0, 
- $*”’( - 1 )  + (R/E) $*( - 1) 

0 

- 0 - 

, +*= 

v* 
ikR) $*(1) 

I R  

ikR) $*( - 1 )  
$*”’( - 1) -(--- I R  
U’( - I )  U’( - l ) E  

R -z$*(l) 
,-$*( - 1)  
R 

0 

0 

(For more details of this and other formulations of the problem, together with 
sample results comparing convergence, the reader is referred to Green (1970).) 
I n  effect, the adjoint differential equation together with its boundary conditions 
(bilinear concomitant set to  zero) has been used to  establish the structure of 
+ and +*. 

For an antisymmetric disturbance (symmetric stream function) the test 
functions can be defined by introducing cosine terms of the form cos (&my) for 
$ and $*. Therefore, an, are vectors formed by inserting cos (4nj.y) into 
4 and +*. These are substituted into (8) to generate (9) and (10). Thus we have, 
in matrix form, (A-cB)a = 0, (11) 

(AT - cBT) a* = 0, (12 )  

where 
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A and B are N x N matrices whose elements are defined by (9) and ( lo ) ,  and the 
superscript T denotes a transposed matrix. By performing the integrations 
involved in the inner products we may obtain expressions for general matrix 
elements of A and B. These reduce to simple algebraic forms (see Green 1970) 
which ma,y be easily evaluated on a computer. 

The computational procedure adopted was the following: we specify a given 
wall condition by specifying the parameters in (4) and a point in the R, k plane; 
an estimate of c is made so that we may evaluate E ;  now having fixed all the 
parameters in the matrices we evaluate the eigenvalue spectrum c. One of the 
eigenvalues in this spectrum should correspond to the initial guess; in general no 
eigenvalue from the spectrum will be sufficiently close to  the initial guess and it 
is necessary to iterate t o  the correct result. Employing Kaplan’s (1964) iterative 
scheme, it was found necessary to iterate only once or twice to  obtain c correct to  
4 decimal places, provided the initial estimate of c was reasonably good. 

5. Results 
For a given set of parameters, the spectra of G for the problem have been 

obtained from equation (1  1) using the adjoint operator, by f i s t  inverting B and 
using Share program SDA3441 to obtain the eigenvalues of AB-l. The com- 
putations were performed in FORTRAN on the CDC 6600 of the University 
of London. 

Comprehensive tests for a rigid wall have established the accuracy of the 
method (see Green 1970). For an examination of a flexible wall, the mass para- 
meter m was fixed a t  a representative value of unity, while the damping para- 
meter D was set a t  a value of 1000, to  observe the effect of changing cw (or 
tension, for a membrane). A value of cw = lo5 was found to simulate a rigid wall, 
with the stability curves insensitive t o  further increase in this parameter. 
Stability results were found for cFv = 3000,5000, lo4 and lo5, which, for the value 
of D selected, imply the waves in the uncoupled wall are underdamped for the 
wave-number range of interest. The stability curves are shown in figure 1, where 
it can be seen that for the values cw = 3000 and 5000 the neutral stability curves 
have two (joined) parts exhibiting different natures. These two parts will be 
referred to  as the lower part and the upper part (from their position in the k 
versus R diagram). The neutral stability curve for cw = lo4 exhibited a similar 
characteristic, although its upper part was at a Reynolds number of roughly 
15000. Curves for larger values of cw close to  the rigid-wall curve (as typified by 
the curve at  cw = lo4) have lower parts whose behaviour is predicted by Benjamin 
(1960) in his description of the class A mode. However, as cw decreases further 
from its rigid-wall value, the damping starts to have a greater influence and the 
lower parts of the neutral stability curves become more unstable (in the sense 
of critical Reynolds number). The upper parts of the neutral stability curves also 
become steadily more unstable as the flexibility of the walls is increased (i.e. cw 
decreases). A marked difference between the lower parts and the upper parts of 
the neutral stability curves is the different rate of amplification experienced 
when crossing the stability boundaries of these two parts. This property is 
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illustrated by the dashed curve in figure 1, where a constant amplification curve 
calculated for cw = 5000 is shown, representing a constant rate of amplification 
of Im (c,) = 2.5. At k = 0.925 on the lower part of the curve, it took an increase 
in R of roughly 400 t o  achieve this amplification rate, while a t  all points on the 
upper part of the curve the amplification rate was so rapid as to  make distinction 
from the neutral curve impossible on this scale of the figure. I n  general, amplifica- 
tion rates increased by a factor of between 10 and 1000 for a given small increase 

4 5 6 7 8 9 

R x 10-3 

FIGURE 1. Neutral stability curves for damped membrane walls. Wave-number k versus 
Reynolds number R, for rn = 1, D = 1000, N = 30. 

C W  Rc kc 
(4 3 000 3 600 0.89 
(ii) 5 000 5 270 0.89 
(iia) 
(iii) 10000 5 940 0.97 
(iv) 100000 5 790 1.02 (an effectively rigid wall) 

5000: constant amplification curve, Im (c,) = 2.5. 

in R when moving from the lower to the upper parts of the stability curves. This 
difference between the magnitudes of the amplification rates experienced when 
crossing the two parts of the neutral stability curves is typified by a rapid 
change of slope in curves of I m  (c, ) versus R (for fixed k) in the nejghbour- 
hood of Im(c,) = 0 (see Green (1970) for further discussion of this point). I n  
obtaining reduction of the amplification rates, it would appear that removal 
of the upper rather than the lower parts of the stability curves is of far more 
importance. 
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To illustrate the effect of damping variation' on stability we set m = 1, 
c, = 5000, and compare the stability results for D = 250 and 1000. Figures 2 
and 3 show the stability curves with the upper part of the stability curve for m, 
D, c,, = 1, 250, 5000, respectively, plotted to high k (where the classical asymp- 
totic analysis would be completely inadequate) to demonstrate that, in this case, 

4 

3 

k 2  

1 

0 I I I I I 
5 6 I 8 9 

R x 

FIGURE 2. Neutral stability curves for damped membrane walls. Wave-number k versus 
Reynolds number R, for m = 1, cw = 5000, N = 30. 

D R, ko 
(i) 250 6190 2.60 (upper branch) 
(ii) 1000 5270 0.89 

the upper region determines the critical Reynolds number. It can be seen that 
the decrease in damping has stabilized the lower part of the stability curve while 
destabilizing the upper part. The waviness a t  high k is due to the accuracy of 
the computed results dropping off; a few points calculated for the stability curve 
with a thirty-five term series, instead of the usual thirty, showed that this 
waviness may be smoothed out. Figure 3 is presented to show that on the upper 
part of the neutral stability curve cp  reaches an almost constant value which is 
slightly less than cw. 
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(ii) ( i )  3 
' t  
OL I I I I 

R x 10-3 

5 6 7 8 9 

FIGURE 3. Spatial stability curves for damped membrane walls. Wave speed cp  versus 
Reynolds number R, conditions as in figure 2. 

6. Conclusions 
The results demonstrate that a modal solution based on a variational formula- 

tion of the boundary-value problem can be used to  obtain accurate results for 
the stability of plane Poiseuille flow between flexible walls. We suggest, in the 
light of these results, that  the method has application to a variety of similar 
problems. 

It may be noted that for certain flexible wall situations it is possible to  
transform, quite readily, the neutral stability curve for rigid-wall plane Poiseuille 
flow into neutral stability curves for the flexible-wall problem, by use of the 
asymptotic analysis developed by Lin (1945, 1955). The basis of such a trans- 
formation lies in the analysis of Benjamin (1960) for the qualitative behaviour 
of the stability curves for the flexible-wall boundary-layer problem. For the 
present problem we take that analysis a stage further to  establish a precise form 
for the transformation of the Tollmien-Schlichting stability curve for a rigid 
wall to  that for a membrane wall with no structural damping. We start with the 
characteristic equation in the usual form and notation (see Benjamin (1960), 
where h = 0, and Landahl (1962)): 

(13) 
where, in our notation, for a membrane without structural damping, 

u + iV + a = % ( z ) / [  1 + A( 1 - F ( z )  ) 1, 

a = - cU'( - l)/mk"c"w/R2 - c2) 

and (from Lin 1955, pp. 37, 38 and 40) 
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F ( z )  is the modified Tietjens function and 

= {kRU'(Yc)l+(Yc+ 1). 

These terms, as given, are to the order of accuracy employed in the calculations 
of the rigid-wall stability curve (Lin 1945)) which is known to be reasonably 
accurate. Since h and v are functions of c alone to this order, 9 is a function of 
z alone, z is a function of kR and c alone and a is real, the parameters k,, R, andc, 
defining the rigid-wall neutral stability curve (corresponding to 01 = 0 ) ,  may be 
used to obtain the parameters I % ,  R and c, defining the flexible-wall neutral 
stability curves, by keeping c and z constant and only changing u through k (see 
Benjamin 1960). Thus 

or 
u(k, c) + a = u(k,, c) and z ( k ,  R, c) = z(k,, R,, c), 

cD'(-l)/k2/'  ( U - ~ ) ~ d y + a  = c u r ( - 1 )  ( U - ~ ) ~ d y  and kR = k,R,. 
-1 

On substituting for U and a, and performing the integration, we have 

(l/k2){f(c)-1-{m(c2,/R2-~2)}-1} = ( l / k i )  f(c)-l (14) 

and kR = k,R,, where f (c) = - $c + c2. By eliminating R and solving for k/k, 
we may draw a number of conclusions concerning the transformation of the 
rigid-wall curves. I n  particular, for membranes under tension only, writing 
mc& = T and m = 0, we have 

(k/kOl2 = {fr k (a - [ R W I f  (c) )*I. (15) 

The two roots of this equation imply that each point on the rigid-wall curve has 
a double image in the transformed plane. It may be further established that the 
neutral stability curve would be expected to close, in agreement with the Hains & 
Price conclusion (1962), since, for sufficiently large R,, k would become complex. 
(This result is confined neither to inertialess membranes nor plane Poiseuille 
flow.) The neutral stability curve given by Lin (1945) for rigid-wall plane 
Poiseuille flow is used in the above transformation to give a neutral stability 
curve for the case when T = 0.5 x lo9. This curve is compared in figure 4 with 
the neutral stability curve obtained from the present program and that of Hains 
& Price for the same value of T .  It may be seen that agreement is good along the 
low R portions of the curves, while there is a marked disagreement between the 
curve of Hains & Price and the other two curves along the high R portions. (The 
curve for the present work has not been completed, since the program is unsuited 
to examine stability a t  the low values of k and high values of R involved.) Since, 
for the asymptotic analysis, the part of the rigid-wall stability curve needed in 
the transformation is of known accuracy (for a given R less than 1.8 x lo4 the 
error in k is less than 5 :h) and since the same order of accuracy is employed in 
the transformation, we would expect the flexible-wall stability curve to be of the 
same accuracy. It is therefore surprising to find that the Hains & Price results 
are in such disagreement with the asymptotic theory and our calculations. 

Proceeding a stage further we may deduce from (15) that  a t  the value of T 
for which - Ri f (c)/T = 0, when R, is the rigid-wall critical Reynolds number, 
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the region of instability shrinks to a point and that for T less than this value there 
is no transformed stability curve. Inserting the values given by Lin (1945) for 
k,, R, and c ,  corresponding to the rigid-wall critical Reynolds number, we find 
that the asymptotic theory predicts the curves closing to a point for T = 2.8 x lo7, 
a value which is less than half that obtained by Hains & Price (T = 6-65 x lo7). 
Further, the point at  which the curves disappear is given as R = 7500, k = 0.74 
by the asymptotic theory and as R = 8240, k = 0.85 by Hains & Price. The 
present program was used to search the neighbourhood of these points and, 
again, the asymptotic theory was found to be more accurate. 

I I I 1 I I I I I J 
0 1 2 3 4 

R x 10-4 

FIGURE 4. Neutral stability curves for membrane walls (tension only, T = 0.5 x 109). 
Wave-number k versus Reynolds number R for (i) present calculations ( N  = 30); (ii) 
Hains & Price (1962); 0, isolated points from asymptotic analysis. 

The low wave-number region always causes some difficulty for the boundary- 
layer situation because the dominant term in the perturbation pressure is the 
inviscid pressure, which is to be expected when the boundary-layer thickness 
becomes insignificant on a wavelength scale, and the stability is then governed 
by the classical Kelvin-Helmholtz analysis. A pure membrane loses its stiffness 
for large wavelengths (because of the very small surface curvature) and is 
unstable when coupled to an inviscid flow. This has led to considerable discussion 
(Benjamin 1960; Landahll962) and the employment of ‘local’ stiffness terms in 
the membrane formulation (Landahl 1962; Kaplan 1964). Such a difficulty does 
not arise for plane Poiseuille flow since the coupling of the membranes to the 
flow does not necessarily cause instability in this case. To show this, the leading 
term from the asymptotic expression for the pressure must be derived (by use 
of the results of Lin (1955) ) and then inserted into the membrane equation giving 

c2( 1 -I- m) - c(2 - i Dm/kR) + (A - m c&/R2) = 0. 

This equation is equivalent to that used by Landahl(lQ62) to illustrate the role 
of damping in the boundary-layer problem and it predicts that instability 
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occurs, for D + 0, when 

(1 +m) (A -mc&/R2) > 0 or R > (++c&)*, 

and, for D = 0, when 

(1 + m) (& - m c2,/R2) > 4 or R > (( l /mcb) (A - 4/9( 1 + m) )}-*. 
We conclude, therefore, that as k tends to zero the stability boundaries in the 
R, 7c plane intercept the R axis at finite non-zero R and that here also the effect 
of damping is destabilizing. Inserting the values of m and cw considered in the 
present calculations in these formulae, we obtain Reynolds numbers which are 
greater than those for the noses of the respective flexible-wall curves. Hence the 
critical Reynolds number is in all cases determined by the computed portions of 
the curves. 

We may finally remark on the approach employed in the present work. Keeping 
the c dependence of E implicit does not take full advantage of a modal type 
solution since the eigenvalue spectra are not directly related to a given physical 
wall (unless highly idealized). With further computing scope the present method 
of solution could be modified to solve directly for the eigenvalues. Noting that c 
occurs quadratically in the present problem, see $ 2  and especially equation (4), 
the retention of c in explicit form when setting up the matrix equations generates 
a matrix equation of the form (Ac2+Bc+D)x  = 0, where A, B and C are 
matrices of the same order as those used in the present method, c is the eigenvalue 
and x the eigenvector. This may be converted to standard form by substituting 
Icx  = Ixl, where I is the unit matrix and x1 a vector, and solving as two 
simultaneous equations to give 

((AolD A-lB - I  ) + C ( i  91 (x:) = 0. 

In  this form, the matrices are of twice the order of those involved in the present 
method. The great advantage is that this would provide the complete spectrum 
of eigenvalues of the physical problem directly and would eliminate the need for 
an iterative scheme, as used in the present solution. 

The work of C. H. Green was supported by a S.R.C. research grant. 
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